Artwork

Kandungan disediakan oleh Zeta Alpha. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Zeta Alpha atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Task-aware Retrieval with Instructions

1:11:13
 
Kongsi
 

Manage episode 355037182 series 3446693
Kandungan disediakan oleh Zeta Alpha. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Zeta Alpha atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Andrew Yates (Assistant Prof at University of Amsterdam) and Sergi Castella (Analyst at Zeta Alpha) discuss the paper "Task-aware Retrieval with Instructions" by Akari Asai et al. This paper proposes to augment a conglomerate of existing retrieval and NLP datasets with natural language instructions (BERRI, Bank of Explicit RetRieval Instructions) and use it to train TART (Multi-task Instructed Retriever).

πŸ“„ Paper: https://arxiv.org/abs/2211.09260

🍻 BEIR benchmark: https://arxiv.org/abs/2104.08663

πŸ“ˆ LOTTE (Long-Tail Topic-stratified Evaluation, introduced in ColBERT v2): https://arxiv.org/abs/2112.01488

Timestamps:

00:00 Intro: "Task-aware Retrieval with Instructions"

02:20 BERRI, TART, X^2 evaluation

04:00 Background: recent works in domain adaptation

06:50 Instruction Tuning 08:50 Retrieval with descriptions

11:30 Retrieval with instructions

17:28 BERRI, Bank of Explicit RetRieval Instructions

21:48 Repurposing NLP tasks as retrieval tasks

23:53 Negative document selection

27:47 TART, Multi-task Instructed Retriever

31:50 Evaluation: Zero-shot and X^2 evaluation

39:20 Results on Table 3 (BEIR, LOTTE)

50:30 Results on Table 4 (X^2-Retrieval)

55:50 Ablations

57:17 Discussion: user modeling, future work, scale

…   continue reading

21 episod

Artwork
iconKongsi
 
Manage episode 355037182 series 3446693
Kandungan disediakan oleh Zeta Alpha. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Zeta Alpha atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Andrew Yates (Assistant Prof at University of Amsterdam) and Sergi Castella (Analyst at Zeta Alpha) discuss the paper "Task-aware Retrieval with Instructions" by Akari Asai et al. This paper proposes to augment a conglomerate of existing retrieval and NLP datasets with natural language instructions (BERRI, Bank of Explicit RetRieval Instructions) and use it to train TART (Multi-task Instructed Retriever).

πŸ“„ Paper: https://arxiv.org/abs/2211.09260

🍻 BEIR benchmark: https://arxiv.org/abs/2104.08663

πŸ“ˆ LOTTE (Long-Tail Topic-stratified Evaluation, introduced in ColBERT v2): https://arxiv.org/abs/2112.01488

Timestamps:

00:00 Intro: "Task-aware Retrieval with Instructions"

02:20 BERRI, TART, X^2 evaluation

04:00 Background: recent works in domain adaptation

06:50 Instruction Tuning 08:50 Retrieval with descriptions

11:30 Retrieval with instructions

17:28 BERRI, Bank of Explicit RetRieval Instructions

21:48 Repurposing NLP tasks as retrieval tasks

23:53 Negative document selection

27:47 TART, Multi-task Instructed Retriever

31:50 Evaluation: Zero-shot and X^2 evaluation

39:20 Results on Table 3 (BEIR, LOTTE)

50:30 Results on Table 4 (X^2-Retrieval)

55:50 Ablations

57:17 Discussion: user modeling, future work, scale

…   continue reading

21 episod

Semua episod

Γ—
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main