Artwork

Kandungan disediakan oleh Zeta Alpha. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Zeta Alpha atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Few-Shot Conversational Dense Retrieval (ConvDR) w/ special guest Antonios Krasakis

1:23:11
 
Kongsi
 

Manage episode 355037187 series 3446693
Kandungan disediakan oleh Zeta Alpha. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Zeta Alpha atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

We discuss Conversational Search with our usual cohosts Andrew Yates and Sergi Castella i Sapé; along with a special guest Antonios Minas Krasakis, PhD candidate at the University of Amsterdam.

We center our discussion around the ConvDR paper: "Few-Shot Conversational Dense Retrieval" by Shi Yu et al. which was the first work to perform Conversational Search without an explicit conversation to query rewriting step.

Timestamps:

00:00 Introduction

00:50 Conversational AI and Conversational Search

05:40 What makes Conversational Search challenging

07:00 ConvDR paper introduction

10:10 Passage representations

11:30 Conversation representations: query rewriting

19:12 ConvDR novel proposed method: teacher-student setup with ANCE

22:50 Datasets and benchmarks: CAsT, CANARD

25:32 Teacher-student advantages and knowledge distillation vs. ranking loss functions

28:09 TREC CAsT and OR-QuAC

35:50 Metrics: MRR, NDCG, holes@10

44:16 Main Results on CAsT and OR-QuAC (Table 2)

57:35 Ablations on combinations of loss functions (Table 4)

1:00:10 How fast is ConvDR? (Table 3)

1:02:40 Qualitative analysis on ConvDR embeddings (Figure 4)

1:04:50 How has this work aged? More recent works in similar directions: Contextualized Quesy Embeddings for Conversational Search.

1:07:02 Is "end-to-end" the silver-bullet for Conversational Search?

1:10:04 Will conversational search become more mainstream?

1:18:44 Latest initiatives for Conversational Search

  continue reading

21 episod

Artwork
iconKongsi
 
Manage episode 355037187 series 3446693
Kandungan disediakan oleh Zeta Alpha. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Zeta Alpha atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

We discuss Conversational Search with our usual cohosts Andrew Yates and Sergi Castella i Sapé; along with a special guest Antonios Minas Krasakis, PhD candidate at the University of Amsterdam.

We center our discussion around the ConvDR paper: "Few-Shot Conversational Dense Retrieval" by Shi Yu et al. which was the first work to perform Conversational Search without an explicit conversation to query rewriting step.

Timestamps:

00:00 Introduction

00:50 Conversational AI and Conversational Search

05:40 What makes Conversational Search challenging

07:00 ConvDR paper introduction

10:10 Passage representations

11:30 Conversation representations: query rewriting

19:12 ConvDR novel proposed method: teacher-student setup with ANCE

22:50 Datasets and benchmarks: CAsT, CANARD

25:32 Teacher-student advantages and knowledge distillation vs. ranking loss functions

28:09 TREC CAsT and OR-QuAC

35:50 Metrics: MRR, NDCG, holes@10

44:16 Main Results on CAsT and OR-QuAC (Table 2)

57:35 Ablations on combinations of loss functions (Table 4)

1:00:10 How fast is ConvDR? (Table 3)

1:02:40 Qualitative analysis on ConvDR embeddings (Figure 4)

1:04:50 How has this work aged? More recent works in similar directions: Contextualized Quesy Embeddings for Conversational Search.

1:07:02 Is "end-to-end" the silver-bullet for Conversational Search?

1:10:04 Will conversational search become more mainstream?

1:18:44 Latest initiatives for Conversational Search

  continue reading

21 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main