Artwork

Kandungan disediakan oleh The Data Flowcast. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The Data Flowcast atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Streamlining Thousands of Data Pipelines at Lyft with Yunhao Qing

19:34
 
Kongsi
 

Manage episode 493031761 series 2948506
Kandungan disediakan oleh The Data Flowcast. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The Data Flowcast atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Managing data pipelines at scale is not just a technical challenge. It is also an organizational one. At Lyft, success means empowering dozens of teams to build with autonomy while enforcing governance and best practices across thousands of workflows.

In this episode, we speak with Yunhao Qing, Software Engineer at Lyft, about building a governed data-engineering platform powered by Airflow that balances flexibility, standardization and scale.

Key Takeaways:

(03:17) Supporting internal teams with a centralized orchestration platform.

(04:54) Migrating to a managed service to reduce infrastructure overhead.

(06:04) Embedding platform-level governance into custom components.

(08:02) Consolidating and regulating the creation of custom code.

(09:48) Identifying and correcting inefficient workflow patterns.

(11:17) Replacing manual workarounds with native platform features.

(14:32) Preparing teams for major version upgrades.

(16:03) Leveraging asset-based scheduling for smarter triggers.

(18:13) Envisioning GenAI and semantic search for future productivity.

Resources Mentioned:

Yunhao Qing

https://www.linkedin.com/in/yunhao-qing

Lyft | LinkedIn

https://www.linkedin.com/company/lyft/

Lyft | Website

https://www.lyft.com/

Apache Airflow

https://airflow.apache.org/

Astronomer

https://www.astronomer.io/

Kubernetes

https://kubernetes.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

81 episod

Artwork
iconKongsi
 
Manage episode 493031761 series 2948506
Kandungan disediakan oleh The Data Flowcast. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The Data Flowcast atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Managing data pipelines at scale is not just a technical challenge. It is also an organizational one. At Lyft, success means empowering dozens of teams to build with autonomy while enforcing governance and best practices across thousands of workflows.

In this episode, we speak with Yunhao Qing, Software Engineer at Lyft, about building a governed data-engineering platform powered by Airflow that balances flexibility, standardization and scale.

Key Takeaways:

(03:17) Supporting internal teams with a centralized orchestration platform.

(04:54) Migrating to a managed service to reduce infrastructure overhead.

(06:04) Embedding platform-level governance into custom components.

(08:02) Consolidating and regulating the creation of custom code.

(09:48) Identifying and correcting inefficient workflow patterns.

(11:17) Replacing manual workarounds with native platform features.

(14:32) Preparing teams for major version upgrades.

(16:03) Leveraging asset-based scheduling for smarter triggers.

(18:13) Envisioning GenAI and semantic search for future productivity.

Resources Mentioned:

Yunhao Qing

https://www.linkedin.com/in/yunhao-qing

Lyft | LinkedIn

https://www.linkedin.com/company/lyft/

Lyft | Website

https://www.lyft.com/

Apache Airflow

https://airflow.apache.org/

Astronomer

https://www.astronomer.io/

Kubernetes

https://kubernetes.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

81 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main