Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
Kandungan disediakan oleh The Data Flowcast. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The Data Flowcast atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !
Pergi ke luar talian dengan aplikasi Player FM !
The Power of Airflow in Modern Data Environments at Wynn Las Vegas with Siva Krishna Yetukuri
MP3•Laman utama episod
Manage episode 421002921 series 2948506
Kandungan disediakan oleh The Data Flowcast. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The Data Flowcast atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Understanding the critical role of data integration and management is essential for driving business success, particularly in a dynamic environment like a luxury casino resort. In this episode, we sit down with Siva Krishna Yetukuri, Cloud Data Architect at Wynn Las Vegas, to explore how Airflow and other tools are transforming data workflows and customer experiences at Wynn Las Vegas. Key Takeaways: (02:00) Siva designs and builds cutting-edge data pipelines and architectures. (02:54) Wynn is building a data platform to drive surveys and marketing strategies. (05:00) Airflow is the backbone of data ingestion, curation and integration. (07:00) Custom operators in Airflow enhance monitoring and reporting. (09:00) Excitement surrounds the use of Airflow 2.9 and its new features. (08:32) A metadata database drives Airflow workflows and captures metrics. (12:31) Understanding Airflow fundamentals in layman’s terms simplifies complexity. (16:33) Transitioning from Control-M to Airflow eases building complex workflows. (24:06) ML models for volume and freshness anomalies improve data quality. (20:15) DAGs are often auto-generated, simplifying the process for engineers. Resources Mentioned: Apache Airflow - https://airflow.apache.org/ Snowflake - https://www.snowflake.com/ Databricks - https://databricks.com/ Great Expectations - https://greatexpectations.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #ai #automation #airflow #machinelearning
…
continue reading
31 episod
The Power of Airflow in Modern Data Environments at Wynn Las Vegas with Siva Krishna Yetukuri
The Data Flowcast: Mastering Airflow for Data Engineering & AI
MP3•Laman utama episod
Manage episode 421002921 series 2948506
Kandungan disediakan oleh The Data Flowcast. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The Data Flowcast atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Understanding the critical role of data integration and management is essential for driving business success, particularly in a dynamic environment like a luxury casino resort. In this episode, we sit down with Siva Krishna Yetukuri, Cloud Data Architect at Wynn Las Vegas, to explore how Airflow and other tools are transforming data workflows and customer experiences at Wynn Las Vegas. Key Takeaways: (02:00) Siva designs and builds cutting-edge data pipelines and architectures. (02:54) Wynn is building a data platform to drive surveys and marketing strategies. (05:00) Airflow is the backbone of data ingestion, curation and integration. (07:00) Custom operators in Airflow enhance monitoring and reporting. (09:00) Excitement surrounds the use of Airflow 2.9 and its new features. (08:32) A metadata database drives Airflow workflows and captures metrics. (12:31) Understanding Airflow fundamentals in layman’s terms simplifies complexity. (16:33) Transitioning from Control-M to Airflow eases building complex workflows. (24:06) ML models for volume and freshness anomalies improve data quality. (20:15) DAGs are often auto-generated, simplifying the process for engineers. Resources Mentioned: Apache Airflow - https://airflow.apache.org/ Snowflake - https://www.snowflake.com/ Databricks - https://databricks.com/ Great Expectations - https://greatexpectations.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #ai #automation #airflow #machinelearning
…
continue reading
31 episod
Semua episod
×Selamat datang ke Player FM
Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.