Discover a whole new take on Artificial Intelligence with Squirro's educational podcast! Join host Lauren Hawker Zafer, a top voice in Artificial Intelligence on LinkedIn, for insightful chats that unravel the fascinating world of tech innovation, use case exploration and AI knowledge. Dive into candid discussions with accomplished industry experts and established academics. With each episode, you'll expand your grasp of cutting-edge technologies and their incredible impact on society, and y ...
…
continue reading
Kandungan disediakan oleh Robin Ranjit Singh Chauhan. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Robin Ranjit Singh Chauhan atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !
Pergi ke luar talian dengan aplikasi Player FM !
RLC 2024 - Posters and Hallways 2
MP3•Laman utama episod
Manage episode 440123012 series 2536330
Kandungan disediakan oleh Robin Ranjit Singh Chauhan. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Robin Ranjit Singh Chauhan atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA.
Featuring:
- 0:01 Hector Kohler from Centre Inria de l'Université de Lille with "Interpretable and Editable Programmatic Tree Policies for Reinforcement Learning"
- 2:29 Quentin Delfosse from TU Darmstadt on "Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents"
- 4:15 Sonja Johnson-Yu from Harvard on "Understanding biological active sensing behaviors by interpreting learned artificial agent policies"
- 6:42 Jannis Blüml from TU Darmstadt on "OCAtari: Object-Centric Atari 2600 Reinforcement Learning Environments"
- 8:20 Cameron Allen from UC Berkeley on "Resolving Partial Observability in Decision Processes via the Lambda Discrepancy"
- 9:48 James Staley from Tufts on "Agent-Centric Human Demonstrations Train World Models"
- 14:54 Jonathan Li from Rensselaer Polytechnic Institute
61 episod
MP3•Laman utama episod
Manage episode 440123012 series 2536330
Kandungan disediakan oleh Robin Ranjit Singh Chauhan. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Robin Ranjit Singh Chauhan atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA.
Featuring:
- 0:01 Hector Kohler from Centre Inria de l'Université de Lille with "Interpretable and Editable Programmatic Tree Policies for Reinforcement Learning"
- 2:29 Quentin Delfosse from TU Darmstadt on "Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents"
- 4:15 Sonja Johnson-Yu from Harvard on "Understanding biological active sensing behaviors by interpreting learned artificial agent policies"
- 6:42 Jannis Blüml from TU Darmstadt on "OCAtari: Object-Centric Atari 2600 Reinforcement Learning Environments"
- 8:20 Cameron Allen from UC Berkeley on "Resolving Partial Observability in Decision Processes via the Lambda Discrepancy"
- 9:48 James Staley from Tufts on "Agent-Centric Human Demonstrations Train World Models"
- 14:54 Jonathan Li from Rensselaer Polytechnic Institute
61 episod
Semua episod
×Selamat datang ke Player FM
Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.