Artwork

Kandungan disediakan oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

How Can Data Science Solve Cybersecurity Challenges?

1:00:01
 
Kongsi
 

Manage episode 359344658 series 1264075
Kandungan disediakan oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

In this webcast, Tom Scanlon, Matthew Walsh and Jeffrey Mellon discuss approaches to using data science and machine learning to address cybersecurity challenges. They provide an overview of data science, including a discussion of what constitutes a good problem to solve with data science. They also discuss applying data science to cybersecurity challenges, highlighting specific challenges such as detecting advanced persistent threats (APTs), assessing risk and trust, determining the authenticity of digital content, and detecting deepfakes.

What attendees will learn:

  • Basics of data science and what makes for a good data science problem
  • How data science techniques can be applied to cybersecurity
  • Ways to get started using data science to address cybersecurity challenges
  continue reading

174 episod

Artwork
iconKongsi
 
Manage episode 359344658 series 1264075
Kandungan disediakan oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

In this webcast, Tom Scanlon, Matthew Walsh and Jeffrey Mellon discuss approaches to using data science and machine learning to address cybersecurity challenges. They provide an overview of data science, including a discussion of what constitutes a good problem to solve with data science. They also discuss applying data science to cybersecurity challenges, highlighting specific challenges such as detecting advanced persistent threats (APTs), assessing risk and trust, determining the authenticity of digital content, and detecting deepfakes.

What attendees will learn:

  • Basics of data science and what makes for a good data science problem
  • How data science techniques can be applied to cybersecurity
  • Ways to get started using data science to address cybersecurity challenges
  continue reading

174 episod

Alle episoder

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main