Artwork

Kandungan disediakan oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

An Introduction to the MLOps Tool Evaluation Rubric

1:00:23
 
Kongsi
 

Manage episode 489496433 series 1264075
Kandungan disediakan oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Organizations looking to build and adopt artificial intelligence (AI)–enabled systems face the challenge of identifying the right capabilities and tools to support Machine Learning Operations (MLOps) pipelines. Navigating the wide range of available tools can be especially difficult for organizations new to AI or those that have not yet deployed systems at scale. This webcast introduces the MLOps Tool Evaluation Rubric, designed to help acquisition teams pinpoint organizational priorities for MLOps tooling, customize rubrics to evaluate those key capabilities, and ultimately select tools that will effectively support ML developers and systems throughout the entire lifecycle, from exploratory data analysis to model deployment and monitoring. This webcast will walk viewers through the rubric's design and content, share lessons learned from applying the rubric in practice, and conclude with a brief demo.

What Attendees Will Learn:

• How to identify and prioritize key capabilities for MLOps tooling within their organizations

• How to customize and apply the MLOps Tool Evaluation Rubric to evaluate potential tools effectively

• Best practices and lessons learned from real-world use of the rubric in AI projects

  continue reading

174 episod

Artwork
iconKongsi
 
Manage episode 489496433 series 1264075
Kandungan disediakan oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Organizations looking to build and adopt artificial intelligence (AI)–enabled systems face the challenge of identifying the right capabilities and tools to support Machine Learning Operations (MLOps) pipelines. Navigating the wide range of available tools can be especially difficult for organizations new to AI or those that have not yet deployed systems at scale. This webcast introduces the MLOps Tool Evaluation Rubric, designed to help acquisition teams pinpoint organizational priorities for MLOps tooling, customize rubrics to evaluate those key capabilities, and ultimately select tools that will effectively support ML developers and systems throughout the entire lifecycle, from exploratory data analysis to model deployment and monitoring. This webcast will walk viewers through the rubric's design and content, share lessons learned from applying the rubric in practice, and conclude with a brief demo.

What Attendees Will Learn:

• How to identify and prioritize key capabilities for MLOps tooling within their organizations

• How to customize and apply the MLOps Tool Evaluation Rubric to evaluate potential tools effectively

• Best practices and lessons learned from real-world use of the rubric in AI projects

  continue reading

174 episod

כל הפרקים

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main