Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
Kandungan disediakan oleh Ulrik B. Carlsson and Ulrik Carlsson. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Ulrik B. Carlsson and Ulrik Carlsson atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !
Pergi ke luar talian dengan aplikasi Player FM !
Matt and Ulrik make unsupervised product recommendation engines
MP3•Laman utama episod
Manage episode 248013317 series 2582622
Kandungan disediakan oleh Ulrik B. Carlsson and Ulrik Carlsson. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Ulrik B. Carlsson and Ulrik Carlsson atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
This episode is brought to you by by Maplytics by Inogic. Data Scientist Matt Lamb and Microsoft MVP Ulrik Carlsson discusses how you create product recommendation engines. A separate discipline in data science, combining content filtering and collaborative filtering, to do targeted product recommendations is not only more difficult, but possibly also one of the most lucrative. Episode also includes in discussions on: Combining advanced customer profiling with transactional data.
…
continue reading
- Matt talks to his new product PinPoint, a product recommendation engine for the Aftermarket
- How Content Filtering and Collaborative Filtering combined can make for advanced product recommendations
- Why Ulrik doesn't like continued recommendations from Amazon to buy smoke detectors when they perfectly well know he already has two (and how to tune your algorithm to avoid annoying your customer).
- Possible data science urban legend on Target identifying teenage pregnancies before concerned parents of pregnant teen knows about it.
- Will Matt this time give a concrete answer to the question on how many records are needed to get good results from these algorithms?
Links: PinPoint for Aftermarket
23 episod
MP3•Laman utama episod
Manage episode 248013317 series 2582622
Kandungan disediakan oleh Ulrik B. Carlsson and Ulrik Carlsson. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Ulrik B. Carlsson and Ulrik Carlsson atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
This episode is brought to you by by Maplytics by Inogic. Data Scientist Matt Lamb and Microsoft MVP Ulrik Carlsson discusses how you create product recommendation engines. A separate discipline in data science, combining content filtering and collaborative filtering, to do targeted product recommendations is not only more difficult, but possibly also one of the most lucrative. Episode also includes in discussions on: Combining advanced customer profiling with transactional data.
…
continue reading
- Matt talks to his new product PinPoint, a product recommendation engine for the Aftermarket
- How Content Filtering and Collaborative Filtering combined can make for advanced product recommendations
- Why Ulrik doesn't like continued recommendations from Amazon to buy smoke detectors when they perfectly well know he already has two (and how to tune your algorithm to avoid annoying your customer).
- Possible data science urban legend on Target identifying teenage pregnancies before concerned parents of pregnant teen knows about it.
- Will Matt this time give a concrete answer to the question on how many records are needed to get good results from these algorithms?
Links: PinPoint for Aftermarket
23 episod
Semua episod
×Selamat datang ke Player FM
Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.