Artwork

Kandungan disediakan oleh Skyflow. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Skyflow atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Balancing Innovation and Responsibility in AI/ML Deployment with Jozu's Brad Micklea

43:50
 
Kongsi
 

Manage episode 412992979 series 3386287
Kandungan disediakan oleh Skyflow. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Skyflow atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

In this episode, we dive into the world of MLOps, the engine behind secure and reliable AI/ML deployments. MLOps focuses on the lifecycle of machine learning models, ensuring they are developed and deployed efficiently and responsibly.

With the explosion of ML applications, the demand for specialized tools has skyrocketed, highlighting the need for improved observability, auditing, and reproducibility. This shift necessitates an evolution in ML toolchains to address gaps in security, governance, and reliability.

Jozu is a platform founded to tackle these very challenges by enhancing the collaboration between AI/ML and application development teams. Jozu aims to provide a comprehensive suite of tools focusing on efficiency throughout the model development and deployment process.

This conversation discusses the importance of MLOps, the limitations of current tools, and how Jozu is paving the way for the future of secure and reliable ML deployments.

Resources:

  continue reading

76 episod

Artwork
iconKongsi
 
Manage episode 412992979 series 3386287
Kandungan disediakan oleh Skyflow. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Skyflow atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

In this episode, we dive into the world of MLOps, the engine behind secure and reliable AI/ML deployments. MLOps focuses on the lifecycle of machine learning models, ensuring they are developed and deployed efficiently and responsibly.

With the explosion of ML applications, the demand for specialized tools has skyrocketed, highlighting the need for improved observability, auditing, and reproducibility. This shift necessitates an evolution in ML toolchains to address gaps in security, governance, and reliability.

Jozu is a platform founded to tackle these very challenges by enhancing the collaboration between AI/ML and application development teams. Jozu aims to provide a comprehensive suite of tools focusing on efficiency throughout the model development and deployment process.

This conversation discusses the importance of MLOps, the limitations of current tools, and how Jozu is paving the way for the future of secure and reliable ML deployments.

Resources:

  continue reading

76 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main