Artwork

Kandungan disediakan oleh Ludwig-Maximilians-Universität München and MCMP Team. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Ludwig-Maximilians-Universität München and MCMP Team atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Remarks on the foundations of mathematics

1:31:37
 
Kongsi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2+ y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117473 series 2929680
Kandungan disediakan oleh Ludwig-Maximilians-Universität München and MCMP Team. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Ludwig-Maximilians-Universität München and MCMP Team atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Helmut Schwichtenberg (LMU) gives a talk at the MCMP Colloquium (5 December, 2013) titled "Remarks on the foundations of mathematics". Abstract: We consider minimal logic with implication and universal quantification over (typed) object variables. Free type and predicate parameters may occur. For mathematics we need (i) data (the Scott - Ershov partial continuous functionals) and (ii) predicates (defined inductively or coinductively). In this setting we can define (Leibniz) equality, falsity and the missing logical connectives (negation, disjunction, existential quantification, conjunction). Ex-falso-quodlibet can be proved. Using Kreisel's (modified) realizability we can (even practically) extract computational content from proofs, and (internally) prove soundness.
  continue reading

22 episod

Artwork
iconKongsi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2+ y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117473 series 2929680
Kandungan disediakan oleh Ludwig-Maximilians-Universität München and MCMP Team. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Ludwig-Maximilians-Universität München and MCMP Team atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Helmut Schwichtenberg (LMU) gives a talk at the MCMP Colloquium (5 December, 2013) titled "Remarks on the foundations of mathematics". Abstract: We consider minimal logic with implication and universal quantification over (typed) object variables. Free type and predicate parameters may occur. For mathematics we need (i) data (the Scott - Ershov partial continuous functionals) and (ii) predicates (defined inductively or coinductively). In this setting we can define (Leibniz) equality, falsity and the missing logical connectives (negation, disjunction, existential quantification, conjunction). Ex-falso-quodlibet can be proved. Using Kreisel's (modified) realizability we can (even practically) extract computational content from proofs, and (internally) prove soundness.
  continue reading

22 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main