Artwork

Kandungan disediakan oleh Ludwig-Maximilians-Universität München and MCMP Team. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Ludwig-Maximilians-Universität München and MCMP Team atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

In Good Company? On Hume's Principle and the assignment of numbers to infinite concepts.

1:07:17
 
Kongsi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117471 series 2929680
Kandungan disediakan oleh Ludwig-Maximilians-Universität München and MCMP Team. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Ludwig-Maximilians-Universität München and MCMP Team atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Paolo Mancosu (UC Berkeley) gives a talk at the MCMP Colloquium (8 May, 2014) titled "In Good Company? On Hume's Principle and the assignment of numbers to infinite concepts.". Abstract: In a recent article (Review of Symbolic Logic 2009), I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign numerosities to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosities assignments differ from the standard assignment of size provided by Cantor’s cardinality assignments. In this talk, I generalize some specific worries emerging from the theory of numerosities to a line of thought resulting in what I call a ‘good company’ objection to Hume’s principle. The talk has four main parts. The first takes a historical look at nineteenth-century attributions of equality of numbers in terms of one-one correlations and argues that there was no agreement as to how to extend such determinations to infinite sets of objects. This leads to the second part where I show that there are countably infinite many abstraction principles that are ‘good’, in the sense that they share the same virtues of HP and from which we can derive the axioms of second order arithmetic. The third part connects this material to a debate on Finite Hume Principle between Heck and MacBride and states the ‘good company’ objection. Finally, the last part gives a tentative taxonomy of possible neo-logicist responses to the ‘good company’ objection and makes a foray into the relevance of this material for the issue of cross-sortal identifications for abstractions.
  continue reading

22 episod

Artwork
iconKongsi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117471 series 2929680
Kandungan disediakan oleh Ludwig-Maximilians-Universität München and MCMP Team. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Ludwig-Maximilians-Universität München and MCMP Team atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Paolo Mancosu (UC Berkeley) gives a talk at the MCMP Colloquium (8 May, 2014) titled "In Good Company? On Hume's Principle and the assignment of numbers to infinite concepts.". Abstract: In a recent article (Review of Symbolic Logic 2009), I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign numerosities to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosities assignments differ from the standard assignment of size provided by Cantor’s cardinality assignments. In this talk, I generalize some specific worries emerging from the theory of numerosities to a line of thought resulting in what I call a ‘good company’ objection to Hume’s principle. The talk has four main parts. The first takes a historical look at nineteenth-century attributions of equality of numbers in terms of one-one correlations and argues that there was no agreement as to how to extend such determinations to infinite sets of objects. This leads to the second part where I show that there are countably infinite many abstraction principles that are ‘good’, in the sense that they share the same virtues of HP and from which we can derive the axioms of second order arithmetic. The third part connects this material to a debate on Finite Hume Principle between Heck and MacBride and states the ‘good company’ objection. Finally, the last part gives a tentative taxonomy of possible neo-logicist responses to the ‘good company’ objection and makes a foray into the relevance of this material for the issue of cross-sortal identifications for abstractions.
  continue reading

22 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas