Artwork

Kandungan disediakan oleh Machine Learning Street Talk (MLST). Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Machine Learning Street Talk (MLST) atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Clement Bonnet - Can Latent Program Networks Solve Abstract Reasoning?

51:26
 
Kongsi
 

Manage episode 467488048 series 2803422
Kandungan disediakan oleh Machine Learning Street Talk (MLST). Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Machine Learning Street Talk (MLST) atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Clement Bonnet discusses his novel approach to the ARC (Abstraction and Reasoning Corpus) challenge. Unlike approaches that rely on fine-tuning LLMs or generating samples at inference time, Clement's method encodes input-output pairs into a latent space, optimizes this representation with a search algorithm, and decodes outputs for new inputs. This end-to-end architecture uses a VAE loss, including reconstruction and prior losses.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Check out their super fast DeepSeek R1 hosting!

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT + RESEARCH OVERVIEW:

https://www.dropbox.com/scl/fi/j7m0gaz1126y594gswtma/CLEMMLST.pdf?rlkey=y5qvwq2er5nchbcibm07rcfpq&dl=0

Clem and Matthew-

https://www.linkedin.com/in/clement-bonnet16/

https://github.com/clement-bonnet

https://mvmacfarlane.github.io/

TOC

1. LPN Fundamentals

[00:00:00] 1.1 Introduction to ARC Benchmark and LPN Overview

[00:05:05] 1.2 Neural Networks' Challenges with ARC and Program Synthesis

[00:06:55] 1.3 Induction vs Transduction in Machine Learning

2. LPN Architecture and Latent Space

[00:11:50] 2.1 LPN Architecture and Latent Space Implementation

[00:16:25] 2.2 LPN Latent Space Encoding and VAE Architecture

[00:20:25] 2.3 Gradient-Based Search Training Strategy

[00:23:39] 2.4 LPN Model Architecture and Implementation Details

3. Implementation and Scaling

[00:27:34] 3.1 Training Data Generation and re-ARC Framework

[00:31:28] 3.2 Limitations of Latent Space and Multi-Thread Search

[00:34:43] 3.3 Program Composition and Computational Graph Architecture

4. Advanced Concepts and Future Directions

[00:45:09] 4.1 AI Creativity and Program Synthesis Approaches

[00:49:47] 4.2 Scaling and Interpretability in Latent Space Models

REFS

[00:00:05] ARC benchmark, Chollet

https://arxiv.org/abs/2412.04604

[00:02:10] Latent Program Spaces, Bonnet, Macfarlane

https://arxiv.org/abs/2411.08706

[00:07:45] Kevin Ellis work on program generation

https://www.cs.cornell.edu/~ellisk/

[00:08:45] Induction vs transduction in abstract reasoning, Li et al.

https://arxiv.org/abs/2411.02272

[00:17:40] VAEs, Kingma, Welling

https://arxiv.org/abs/1312.6114

[00:27:50] re-ARC, Hodel

https://github.com/michaelhodel/re-arc

[00:29:40] Grid size in ARC tasks, Chollet

https://github.com/fchollet/ARC-AGI

[00:33:00] Critique of deep learning, Marcus

https://arxiv.org/vc/arxiv/papers/2002/2002.06177v1.pdf

  continue reading

240 episod

Artwork
iconKongsi
 
Manage episode 467488048 series 2803422
Kandungan disediakan oleh Machine Learning Street Talk (MLST). Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Machine Learning Street Talk (MLST) atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Clement Bonnet discusses his novel approach to the ARC (Abstraction and Reasoning Corpus) challenge. Unlike approaches that rely on fine-tuning LLMs or generating samples at inference time, Clement's method encodes input-output pairs into a latent space, optimizes this representation with a search algorithm, and decodes outputs for new inputs. This end-to-end architecture uses a VAE loss, including reconstruction and prior losses.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Check out their super fast DeepSeek R1 hosting!

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT + RESEARCH OVERVIEW:

https://www.dropbox.com/scl/fi/j7m0gaz1126y594gswtma/CLEMMLST.pdf?rlkey=y5qvwq2er5nchbcibm07rcfpq&dl=0

Clem and Matthew-

https://www.linkedin.com/in/clement-bonnet16/

https://github.com/clement-bonnet

https://mvmacfarlane.github.io/

TOC

1. LPN Fundamentals

[00:00:00] 1.1 Introduction to ARC Benchmark and LPN Overview

[00:05:05] 1.2 Neural Networks' Challenges with ARC and Program Synthesis

[00:06:55] 1.3 Induction vs Transduction in Machine Learning

2. LPN Architecture and Latent Space

[00:11:50] 2.1 LPN Architecture and Latent Space Implementation

[00:16:25] 2.2 LPN Latent Space Encoding and VAE Architecture

[00:20:25] 2.3 Gradient-Based Search Training Strategy

[00:23:39] 2.4 LPN Model Architecture and Implementation Details

3. Implementation and Scaling

[00:27:34] 3.1 Training Data Generation and re-ARC Framework

[00:31:28] 3.2 Limitations of Latent Space and Multi-Thread Search

[00:34:43] 3.3 Program Composition and Computational Graph Architecture

4. Advanced Concepts and Future Directions

[00:45:09] 4.1 AI Creativity and Program Synthesis Approaches

[00:49:47] 4.2 Scaling and Interpretability in Latent Space Models

REFS

[00:00:05] ARC benchmark, Chollet

https://arxiv.org/abs/2412.04604

[00:02:10] Latent Program Spaces, Bonnet, Macfarlane

https://arxiv.org/abs/2411.08706

[00:07:45] Kevin Ellis work on program generation

https://www.cs.cornell.edu/~ellisk/

[00:08:45] Induction vs transduction in abstract reasoning, Li et al.

https://arxiv.org/abs/2411.02272

[00:17:40] VAEs, Kingma, Welling

https://arxiv.org/abs/1312.6114

[00:27:50] re-ARC, Hodel

https://github.com/michaelhodel/re-arc

[00:29:40] Grid size in ARC tasks, Chollet

https://github.com/fchollet/ARC-AGI

[00:33:00] Critique of deep learning, Marcus

https://arxiv.org/vc/arxiv/papers/2002/2002.06177v1.pdf

  continue reading

240 episod

همه قسمت ها

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main