Pergi ke luar talian dengan aplikasi Player FM !
Fraud Detection with Graphs
Manage episode 462377466 series 1361404
In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications.
We'll learn how graphs are used to detect malicious activity in networks, such as identifying harmful domains and executable files by analyzing their relationships within vast datasets.
This will include the use of hierarchical multi-instance learning (HML) to represent JSON-based network activity as graphs and the advantages of analyzing connections between entities (like clients, domains etc.).
Our guest shows that while other graph methods (such as GNN or Label Propagation) lack in scalability or having trouble with heterogeneous graphs, his method can tackle them because of the "locality assumption" – fraud will be a local phenomenon in the graph – and by relying on this assumption, we can get faster and more accurate results.
-------------------------------
Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year
592 episod
Manage episode 462377466 series 1361404
In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications.
We'll learn how graphs are used to detect malicious activity in networks, such as identifying harmful domains and executable files by analyzing their relationships within vast datasets.
This will include the use of hierarchical multi-instance learning (HML) to represent JSON-based network activity as graphs and the advantages of analyzing connections between entities (like clients, domains etc.).
Our guest shows that while other graph methods (such as GNN or Label Propagation) lack in scalability or having trouble with heterogeneous graphs, his method can tackle them because of the "locality assumption" – fraud will be a local phenomenon in the graph – and by relying on this assumption, we can get faster and more accurate results.
-------------------------------
Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year
592 episod
Semua episod
×Selamat datang ke Player FM
Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.