Artwork

Kandungan disediakan oleh The New Stack Podcast and The New Stack. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The New Stack Podcast and The New Stack atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Kubernetes GPU Management Just Got a Major Upgrade

35:26
 
Kongsi
 

Manage episode 523775887 series 75006
Kandungan disediakan oleh The New Stack Podcast and The New Stack. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The New Stack Podcast and The New Stack atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Nvidia Distinguished Engineer Kevin Klues noted that low-level systems work is invisible when done well and highly visible when it fails — a dynamic that frames current Kubernetes innovations for AI. At KubeCon + CloudNativeCon North America 2025, Klues and AWS product manager Jesse Butler discussed two emerging capabilities: dynamic resource allocation (DRA) and a new workload abstraction designed for sophisticated AI scheduling.

DRA, now generally available in Kubernetes 1.34, fixes long-standing limitations in GPU requests. Instead of simply asking for a number of GPUs, users can specify types and configurations. Modeled after persistent volumes, DRA allows any specialized hardware to be exposed through standardized interfaces, enabling vendors to deliver custom device drivers cleanly. Butler called it one of the most elegant designs in Kubernetes.

Yet complex AI workloads require more coordination. A forthcoming workload abstraction, debuting in Kubernetes 1.35, will let users define pod groups with strict scheduling and topology rules — ensuring multi-node jobs start fully or not at all. Klues emphasized that this abstraction will shape Kubernetes’ AI trajectory for the next decade and encouraged community involvement.

Learn more from The New Stack about dynamic resource allocation:

Kubernetes Primer: Dynamic Resource Allocation (DRA) for GPU Workloads

Kubernetes v1.34 Introduces Benefits but Also New Blind Spots

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

921 episod

Artwork
iconKongsi
 
Manage episode 523775887 series 75006
Kandungan disediakan oleh The New Stack Podcast and The New Stack. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The New Stack Podcast and The New Stack atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Nvidia Distinguished Engineer Kevin Klues noted that low-level systems work is invisible when done well and highly visible when it fails — a dynamic that frames current Kubernetes innovations for AI. At KubeCon + CloudNativeCon North America 2025, Klues and AWS product manager Jesse Butler discussed two emerging capabilities: dynamic resource allocation (DRA) and a new workload abstraction designed for sophisticated AI scheduling.

DRA, now generally available in Kubernetes 1.34, fixes long-standing limitations in GPU requests. Instead of simply asking for a number of GPUs, users can specify types and configurations. Modeled after persistent volumes, DRA allows any specialized hardware to be exposed through standardized interfaces, enabling vendors to deliver custom device drivers cleanly. Butler called it one of the most elegant designs in Kubernetes.

Yet complex AI workloads require more coordination. A forthcoming workload abstraction, debuting in Kubernetes 1.35, will let users define pod groups with strict scheduling and topology rules — ensuring multi-node jobs start fully or not at all. Klues emphasized that this abstraction will shape Kubernetes’ AI trajectory for the next decade and encouraged community involvement.

Learn more from The New Stack about dynamic resource allocation:

Kubernetes Primer: Dynamic Resource Allocation (DRA) for GPU Workloads

Kubernetes v1.34 Introduces Benefits but Also New Blind Spots

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

921 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main