Artwork

Kandungan disediakan oleh MapScaping. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh MapScaping atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Telematics Data is Reshaping Our Understanding of Road Networks

58:52
 
Kongsi
 

Manage episode 460092900 series 2502116
Kandungan disediakan oleh MapScaping. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh MapScaping atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Telematics Data is Reshaping Our Understanding of Road Networks

In this episode MIT Professor Hari Balakrishnan explains how Cambridge Mobile Telematics (CMT) is transforming traditional road network analysis by layering dynamic behavioural data onto static map geometries.

Telematics data creates "living maps" that go beyond traditional road geometry and attributes. By collecting movement data from 45 million users through phones and IoT devices, CMT has developed sophisticated models that can:

- Generate dynamic risk maps showing crash probability for every road segment globally
- Detect infrastructure issues that aren't visible in traditional mapping (like poorly placed bus stops)
- Validate and correct map attributes like speed limits and lane connectivity
- Differentiate between overpasses and intersections using movement patterns
- Create contextual understanding of road segments based on actual usage patterns

Particularly interesting for GIS professionals is CMT's approach to data fusion, combining traditional map geometry with temporal movement data to create predictive models. This has practical applications from infrastructure planning to autonomous vehicle navigation, where understanding the cultural context of road usage proves as important as precise geometry.

The episode challenges traditional static approaches to road network mapping, suggesting that the future lies in dynamic, behavior-informed spatial data models that can adapt to changing conditions and usage patterns.

For anyone working with transportation networks or smart city initiatives, this episode provides valuable insights into how movement data is changing our understanding of road infrastructure and spatial behaviour.

Connect with Hari on LinkedIn!

https://www.linkedin.com/in/hari-balakrishnan-0702263/

Cambridge Mobile Telematics

https://www.cmtelematics.com/

BTW, I keep busy creating free mapping tools and publishing them there

https://mapscaping.com/map-tools/ swing by and take a look!

  continue reading

240 episod

Artwork
iconKongsi
 
Manage episode 460092900 series 2502116
Kandungan disediakan oleh MapScaping. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh MapScaping atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Telematics Data is Reshaping Our Understanding of Road Networks

In this episode MIT Professor Hari Balakrishnan explains how Cambridge Mobile Telematics (CMT) is transforming traditional road network analysis by layering dynamic behavioural data onto static map geometries.

Telematics data creates "living maps" that go beyond traditional road geometry and attributes. By collecting movement data from 45 million users through phones and IoT devices, CMT has developed sophisticated models that can:

- Generate dynamic risk maps showing crash probability for every road segment globally
- Detect infrastructure issues that aren't visible in traditional mapping (like poorly placed bus stops)
- Validate and correct map attributes like speed limits and lane connectivity
- Differentiate between overpasses and intersections using movement patterns
- Create contextual understanding of road segments based on actual usage patterns

Particularly interesting for GIS professionals is CMT's approach to data fusion, combining traditional map geometry with temporal movement data to create predictive models. This has practical applications from infrastructure planning to autonomous vehicle navigation, where understanding the cultural context of road usage proves as important as precise geometry.

The episode challenges traditional static approaches to road network mapping, suggesting that the future lies in dynamic, behavior-informed spatial data models that can adapt to changing conditions and usage patterns.

For anyone working with transportation networks or smart city initiatives, this episode provides valuable insights into how movement data is changing our understanding of road infrastructure and spatial behaviour.

Connect with Hari on LinkedIn!

https://www.linkedin.com/in/hari-balakrishnan-0702263/

Cambridge Mobile Telematics

https://www.cmtelematics.com/

BTW, I keep busy creating free mapping tools and publishing them there

https://mapscaping.com/map-tools/ swing by and take a look!

  continue reading

240 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main