Artwork

Kandungan disediakan oleh The Data Flowcast. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The Data Flowcast atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Orchestrating Analytics and AI Workflows at Telia with Arjun Anandkumar

26:00
 
Kongsi
 

Manage episode 464044556 series 2053958
Kandungan disediakan oleh The Data Flowcast. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The Data Flowcast atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

The future of data engineering lies in seamless orchestration and automation. In this episode, Arjun Anandkumar, Data Engineer at Telia, shares how his team uses Airflow to drive analytics and AI workflows. He highlights the challenges of scaling data platforms and how adopting best practices can simplify complex processes for teams across the organization. Arjun also discusses the transformative role of tools like Cosmos and Terraform in enhancing efficiency and collaboration.

Key Takeaways:

(02:16) Telia operates across the Nordics and Baltics, focusing on telecom and energy services.

(03:45) Airflow runs dbt models seamlessly with Cosmos on AWS MWAA.

(05:47) Cosmos improves visibility and orchestration in Airflow.

(07:00) Medallion Architecture organizes data into bronze, silver and gold layers.

(08:34) Task group challenges highlight the need for adaptable workflows.

(15:04) Scaling managed services requires trial, error and tailored tweaks.

(19:46) Terraform scales infrastructure, while YAML templates manage DAGs efficiently.

(20:00) Templated DAGs and robust testing enhance platform management.

(24:15) Open-source resources drive innovation in Airflow practices.

Resources Mentioned:

Arjun Anandkumar -

https://www.linkedin.com/in/arjunanand1/?originalSubdomain=dk

Telia -

https://www.linkedin.com/company/teliacompany/

Apache Airflow -

https://airflow.apache.org/

Cosmos by Astronomer -

https://www.astronomer.io/cosmos/

Terraform -

https://www.terraform.io/

Medallion Architecture by Databricks -

https://www.databricks.com/glossary/medallion-architecture

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episod

Artwork
iconKongsi
 
Manage episode 464044556 series 2053958
Kandungan disediakan oleh The Data Flowcast. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh The Data Flowcast atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

The future of data engineering lies in seamless orchestration and automation. In this episode, Arjun Anandkumar, Data Engineer at Telia, shares how his team uses Airflow to drive analytics and AI workflows. He highlights the challenges of scaling data platforms and how adopting best practices can simplify complex processes for teams across the organization. Arjun also discusses the transformative role of tools like Cosmos and Terraform in enhancing efficiency and collaboration.

Key Takeaways:

(02:16) Telia operates across the Nordics and Baltics, focusing on telecom and energy services.

(03:45) Airflow runs dbt models seamlessly with Cosmos on AWS MWAA.

(05:47) Cosmos improves visibility and orchestration in Airflow.

(07:00) Medallion Architecture organizes data into bronze, silver and gold layers.

(08:34) Task group challenges highlight the need for adaptable workflows.

(15:04) Scaling managed services requires trial, error and tailored tweaks.

(19:46) Terraform scales infrastructure, while YAML templates manage DAGs efficiently.

(20:00) Templated DAGs and robust testing enhance platform management.

(24:15) Open-source resources drive innovation in Airflow practices.

Resources Mentioned:

Arjun Anandkumar -

https://www.linkedin.com/in/arjunanand1/?originalSubdomain=dk

Telia -

https://www.linkedin.com/company/teliacompany/

Apache Airflow -

https://airflow.apache.org/

Cosmos by Astronomer -

https://www.astronomer.io/cosmos/

Terraform -

https://www.terraform.io/

Medallion Architecture by Databricks -

https://www.databricks.com/glossary/medallion-architecture

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main