Artwork

Kandungan disediakan oleh Timothy Nguyen. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Timothy Nguyen atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Jay McClelland | Neural Networks: Artificial and Biological

2:59:15
 
Kongsi
 

Manage episode 443219902 series 3389153
Kandungan disediakan oleh Timothy Nguyen. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Timothy Nguyen atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Jay McClelland is a pioneer in the field of artificial intelligence and is a cognitive psychologist and professor at Stanford University in the psychology, linguistics, and computer science departments. Together with David Rumelhart, Jay published the two volume work Parallel Distributed Processing, which has led to the flourishing of the connectionist approach to understanding cognition.

In this conversation, Jay gives us a crash course in how neurons and biological brains work. This sets the stage for how psychologists such as Jay, David Rumelhart, and Geoffrey Hinton historically approached the development of models of cognition and ultimately artificial intelligence. We also discuss alternative approaches to neural computation such as symbolic and neuroscientific ones.

Patreon (bonus materials + video chat):
https://www.patreon.com/timothynguyen

Part I. Introduction

  • 00:00 : Preview
  • 01:10 : Cognitive psychology
  • 07:14 : Interdisciplinary work and Jay's academic journey
  • 12:39 : Context affects perception
  • 13:05 : Chomsky and psycholinguists
  • 8:03 : Technical outline

Part II. The Brain

  • 00:20:20 : Structure of neurons
  • 00:25:26 : Action potentials
  • 00:27:00 : Synaptic processes and neuron firing
  • 00:29:18 : Inhibitory neurons
  • 00:33:10 : Feedforward neural networks
  • 00:34:57 : Visual system
  • 00:39:46 : Various parts of the visual cortex
  • 00:45:31 : Columnar organization in the cortex
  • 00:47:04 : Colocation in artificial vs biological networks
  • 00:53:03 : Sensory systems and brain maps

Part III. Approaches to AI, PDP, and Learning Rules

  • 01:12:35 : Chomsky, symbolic rules, universal grammar
  • 01:28:28 : Neuroscience, Francis Crick, vision vs language
  • 01:32:36 : Neuroscience = bottom up
  • 01:37:20 : Jay’s path to AI
  • 01:43:51 : James Anderson
  • 01:44:51 : Geoff Hinton
  • 01:54:25 : Parallel Distributed Processing (PDP)
  • 02:03:40 : McClelland & Rumelhart’s reading model
  • 02:31:25 : Theories of learning
  • 02:35:52 : Hebbian learning
  • 02:43:23 : Rumelhart’s Delta rule
  • 02:44:45 : Gradient descent
  • 02:47:04 : Backpropagation
  • 02:54:52 : Outro: Retrospective and looking ahead

Image credits:
http://timothynguyen.org/image-credits/
Further reading:

Rumelhart, McClelland. Parallel Distributed Processing.

McClelland, J. L. (2013). Integrating probabilistic models of perception and interactive neural networks: A historical and tutorial review

Twitter: @iamtimnguyen

Webpage: http://www.timothynguyen.org

  continue reading

22 episod

Artwork
iconKongsi
 
Manage episode 443219902 series 3389153
Kandungan disediakan oleh Timothy Nguyen. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Timothy Nguyen atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Jay McClelland is a pioneer in the field of artificial intelligence and is a cognitive psychologist and professor at Stanford University in the psychology, linguistics, and computer science departments. Together with David Rumelhart, Jay published the two volume work Parallel Distributed Processing, which has led to the flourishing of the connectionist approach to understanding cognition.

In this conversation, Jay gives us a crash course in how neurons and biological brains work. This sets the stage for how psychologists such as Jay, David Rumelhart, and Geoffrey Hinton historically approached the development of models of cognition and ultimately artificial intelligence. We also discuss alternative approaches to neural computation such as symbolic and neuroscientific ones.

Patreon (bonus materials + video chat):
https://www.patreon.com/timothynguyen

Part I. Introduction

  • 00:00 : Preview
  • 01:10 : Cognitive psychology
  • 07:14 : Interdisciplinary work and Jay's academic journey
  • 12:39 : Context affects perception
  • 13:05 : Chomsky and psycholinguists
  • 8:03 : Technical outline

Part II. The Brain

  • 00:20:20 : Structure of neurons
  • 00:25:26 : Action potentials
  • 00:27:00 : Synaptic processes and neuron firing
  • 00:29:18 : Inhibitory neurons
  • 00:33:10 : Feedforward neural networks
  • 00:34:57 : Visual system
  • 00:39:46 : Various parts of the visual cortex
  • 00:45:31 : Columnar organization in the cortex
  • 00:47:04 : Colocation in artificial vs biological networks
  • 00:53:03 : Sensory systems and brain maps

Part III. Approaches to AI, PDP, and Learning Rules

  • 01:12:35 : Chomsky, symbolic rules, universal grammar
  • 01:28:28 : Neuroscience, Francis Crick, vision vs language
  • 01:32:36 : Neuroscience = bottom up
  • 01:37:20 : Jay’s path to AI
  • 01:43:51 : James Anderson
  • 01:44:51 : Geoff Hinton
  • 01:54:25 : Parallel Distributed Processing (PDP)
  • 02:03:40 : McClelland & Rumelhart’s reading model
  • 02:31:25 : Theories of learning
  • 02:35:52 : Hebbian learning
  • 02:43:23 : Rumelhart’s Delta rule
  • 02:44:45 : Gradient descent
  • 02:47:04 : Backpropagation
  • 02:54:52 : Outro: Retrospective and looking ahead

Image credits:
http://timothynguyen.org/image-credits/
Further reading:

Rumelhart, McClelland. Parallel Distributed Processing.

McClelland, J. L. (2013). Integrating probabilistic models of perception and interactive neural networks: A historical and tutorial review

Twitter: @iamtimnguyen

Webpage: http://www.timothynguyen.org

  continue reading

22 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main