Artwork

Kandungan disediakan oleh Society of Actuaries (SOA). Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Society of Actuaries (SOA) atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Emerging Topics Community: Return to Trees, Part 3: Random Forest

31:09
 
Kongsi
 

Manage episode 411733083 series 30328
Kandungan disediakan oleh Society of Actuaries (SOA). Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Society of Actuaries (SOA) atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Building on the discussion of individual decision trees in the prior episode, Shea and Anders shift to one of today’s most popular ensemble models, the Random Forest. At first glance, the algorithm may seem like a brute force approach of simply running hundreds or thousands of decision trees, but it leverages the concept of “bagging” to avoid overfitting and attempt to learn as much as possible from the entire data sets, not just a few key features. We close by covering strengths and weaknesses of this model and providing some real-life examples.

  continue reading

190 episod

Artwork
iconKongsi
 
Manage episode 411733083 series 30328
Kandungan disediakan oleh Society of Actuaries (SOA). Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Society of Actuaries (SOA) atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Building on the discussion of individual decision trees in the prior episode, Shea and Anders shift to one of today’s most popular ensemble models, the Random Forest. At first glance, the algorithm may seem like a brute force approach of simply running hundreds or thousands of decision trees, but it leverages the concept of “bagging” to avoid overfitting and attempt to learn as much as possible from the entire data sets, not just a few key features. We close by covering strengths and weaknesses of this model and providing some real-life examples.

  continue reading

190 episod

Alla avsnitt

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main