Artwork

Kandungan disediakan oleh Brian Carter. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Brian Carter atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Does the DIFF Transformer make a Diff?

8:03
 
Kongsi
 

Manage episode 449252081 series 3605861
Kandungan disediakan oleh Brian Carter. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Brian Carter atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Introducing a novel transformer architecture, Differential Transformer, designed to improve the performance of large language models. The key innovation lies in its differential attention mechanism, which calculates attention scores as the difference between two separate softmax attention maps. This subtraction effectively cancels out irrelevant context (attention noise), enabling the model to focus on crucial information. The authors demonstrate that Differential Transformer outperforms traditional transformers in various tasks, including long-context modeling, key information retrieval, and hallucination mitigation. Furthermore, Differential Transformer exhibits greater robustness to order permutations in in-context learning and reduces activation outliers, paving the way for more efficient quantization. These advantages position Differential Transformer as a promising foundation architecture for future large language model development.

Read the research here: https://arxiv.org/pdf/2410.05258

  continue reading

71 episod

Artwork
iconKongsi
 
Manage episode 449252081 series 3605861
Kandungan disediakan oleh Brian Carter. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Brian Carter atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Introducing a novel transformer architecture, Differential Transformer, designed to improve the performance of large language models. The key innovation lies in its differential attention mechanism, which calculates attention scores as the difference between two separate softmax attention maps. This subtraction effectively cancels out irrelevant context (attention noise), enabling the model to focus on crucial information. The authors demonstrate that Differential Transformer outperforms traditional transformers in various tasks, including long-context modeling, key information retrieval, and hallucination mitigation. Furthermore, Differential Transformer exhibits greater robustness to order permutations in in-context learning and reduces activation outliers, paving the way for more efficient quantization. These advantages position Differential Transformer as a promising foundation architecture for future large language model development.

Read the research here: https://arxiv.org/pdf/2410.05258

  continue reading

71 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main