Artwork

Kandungan disediakan oleh Brian Carter. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Brian Carter atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Does RAG Even Scale? EyeLevel vs LangChain

7:55
 
Kongsi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on November 09, 2024 13:09 (5M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 445344642 series 3605861
Kandungan disediakan oleh Brian Carter. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Brian Carter atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

A research team from EyeLevel.ai has found that vector databases, which are commonly used in RAG (Retrieval-Augmented Generation) systems, have a scaling problem. Their research shows that the accuracy of vector similarity search degrades significantly as the number of pages in the database increases, leading to a substantial performance hit. This problem can be attributed to the way modern encoders organize information in high-dimensional vector spaces. In contrast, EyeLevel's RAG platform, which does not rely on vectors, demonstrates superior performance at scale, losing only 2% accuracy with 100,000 pages. The team's findings highlight the need for developers to be aware of these challenges when scaling RAG applications in production.

Read more: https://www.reddit.com/r/Rag/comments/1g3h9w2/does_rag_have_a_scaling_problem/

  continue reading

71 episod

Artwork
iconKongsi
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on November 09, 2024 13:09 (5M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 445344642 series 3605861
Kandungan disediakan oleh Brian Carter. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Brian Carter atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

A research team from EyeLevel.ai has found that vector databases, which are commonly used in RAG (Retrieval-Augmented Generation) systems, have a scaling problem. Their research shows that the accuracy of vector similarity search degrades significantly as the number of pages in the database increases, leading to a substantial performance hit. This problem can be attributed to the way modern encoders organize information in high-dimensional vector spaces. In contrast, EyeLevel's RAG platform, which does not rely on vectors, demonstrates superior performance at scale, losing only 2% accuracy with 100,000 pages. The team's findings highlight the need for developers to be aware of these challenges when scaling RAG applications in production.

Read more: https://www.reddit.com/r/Rag/comments/1g3h9w2/does_rag_have_a_scaling_problem/

  continue reading

71 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main