Does RAG Even Scale? EyeLevel vs LangChain
Fetch error
Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on November 09, 2024 13:09 (
What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.
Manage episode 445344642 series 3605861
A research team from EyeLevel.ai has found that vector databases, which are commonly used in RAG (Retrieval-Augmented Generation) systems, have a scaling problem. Their research shows that the accuracy of vector similarity search degrades significantly as the number of pages in the database increases, leading to a substantial performance hit. This problem can be attributed to the way modern encoders organize information in high-dimensional vector spaces. In contrast, EyeLevel's RAG platform, which does not rely on vectors, demonstrates superior performance at scale, losing only 2% accuracy with 100,000 pages. The team's findings highlight the need for developers to be aware of these challenges when scaling RAG applications in production.
Read more: https://www.reddit.com/r/Rag/comments/1g3h9w2/does_rag_have_a_scaling_problem/
71 episod