Artwork

Kandungan disediakan oleh Adam Bien. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Adam Bien atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Exploring ONNX, Embedding Models, and Retrieval Augmented Generation (RAG) with Langchain4j

1:09:00
 
Kongsi
 

Manage episode 421443440 series 2469611
Kandungan disediakan oleh Adam Bien. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Adam Bien atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification

Dmytro Liubarskyi on twitter: @langchain4j

  continue reading

324 episod

Artwork
iconKongsi
 
Manage episode 421443440 series 2469611
Kandungan disediakan oleh Adam Bien. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Adam Bien atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification

Dmytro Liubarskyi on twitter: @langchain4j

  continue reading

324 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas