Artwork

Kandungan disediakan oleh HackerNoon. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh HackerNoon atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Load Balancing For High Performance Computing Using Quantum Annealing: Adaptive Mesh Refinement

4:57
 
Kongsi
 

Manage episode 427186820 series 3474159
Kandungan disediakan oleh HackerNoon. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh HackerNoon atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/load-balancing-for-high-performance-computing-using-quantum-annealing-adaptive-mesh-refinement.
Exploring quantum annealing's efficacy in load balancing for high-performance computing with grid-based and off-grid simulations on quantum hardware.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #load-balancing, #high-performance-computing, #quantum-annealing, #grid-based-simulation, #off-grid-simulation, #computational-physics, #exascale-computing, #parallel-computing, and more.
This story was written by: @loadbalancing. Learn more about this writer by checking @loadbalancing's about page, and for more stories, please visit hackernoon.com.
In order to formulate load balancing for AMR as an Ising problem suitable for annealers, data was gathered using CompReal66, a fully compressible, finite difference flow solver for the Navier-Stokes equations. Data is defined on a nested hierarchy of logically rectangular collection of cells called grids (or patches) Each level refers to the union of all grids that share the same mesh spacing.

  continue reading

469 episod

Artwork
iconKongsi
 
Manage episode 427186820 series 3474159
Kandungan disediakan oleh HackerNoon. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh HackerNoon atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/load-balancing-for-high-performance-computing-using-quantum-annealing-adaptive-mesh-refinement.
Exploring quantum annealing's efficacy in load balancing for high-performance computing with grid-based and off-grid simulations on quantum hardware.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #load-balancing, #high-performance-computing, #quantum-annealing, #grid-based-simulation, #off-grid-simulation, #computational-physics, #exascale-computing, #parallel-computing, and more.
This story was written by: @loadbalancing. Learn more about this writer by checking @loadbalancing's about page, and for more stories, please visit hackernoon.com.
In order to formulate load balancing for AMR as an Ising problem suitable for annealers, data was gathered using CompReal66, a fully compressible, finite difference flow solver for the Navier-Stokes equations. Data is defined on a nested hierarchy of logically rectangular collection of cells called grids (or patches) Each level refers to the union of all grids that share the same mesh spacing.

  continue reading

469 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main