Artwork

Kandungan disediakan oleh NLP Highlights and Allen Institute for Artificial Intelligence. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh NLP Highlights and Allen Institute for Artificial Intelligence atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

130 - Linking human cognitive patterns to NLP Models, with Lisa Beinborn

44:02
 
Kongsi
 

Manage episode 299517691 series 1452120
Kandungan disediakan oleh NLP Highlights and Allen Institute for Artificial Intelligence. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh NLP Highlights and Allen Institute for Artificial Intelligence atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
In this episode, we talk with Lisa Beinborn, an assistant professor at Vrije Universiteit Amsterdam, about how to use human cognitive signals to improve and analyze NLP models. We start by discussing different kinds of cognitive signals—eye-tracking, EEG, MEG, and fMRI—and challenges associated with using them. We then turn to Lisa’s recent work connecting interpretability measures with eye-tracking data, which reflect the relative importance measures of different tokens in human reading comprehension. We discuss empirical results suggesting that eye-tracking signals correlate strongly with gradient-based saliency measures, but not attention, in NLP methods. We conclude with discussion of the implications of these findings, as well as avenues for future work. Papers discussed in this episode: Towards best practices for leveraging human language processing signals for natural language processing: https://api.semanticscholar.org/CorpusID:219309655 Relative Importance in Sentence Processing: https://api.semanticscholar.org/CorpusID:235358922 Lisa Beinborn’s webpage: https://beinborn.eu/ The hosts for this episode are Alexis Ross and Pradeep Dasigi.
  continue reading

145 episod

Artwork
iconKongsi
 
Manage episode 299517691 series 1452120
Kandungan disediakan oleh NLP Highlights and Allen Institute for Artificial Intelligence. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh NLP Highlights and Allen Institute for Artificial Intelligence atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
In this episode, we talk with Lisa Beinborn, an assistant professor at Vrije Universiteit Amsterdam, about how to use human cognitive signals to improve and analyze NLP models. We start by discussing different kinds of cognitive signals—eye-tracking, EEG, MEG, and fMRI—and challenges associated with using them. We then turn to Lisa’s recent work connecting interpretability measures with eye-tracking data, which reflect the relative importance measures of different tokens in human reading comprehension. We discuss empirical results suggesting that eye-tracking signals correlate strongly with gradient-based saliency measures, but not attention, in NLP methods. We conclude with discussion of the implications of these findings, as well as avenues for future work. Papers discussed in this episode: Towards best practices for leveraging human language processing signals for natural language processing: https://api.semanticscholar.org/CorpusID:219309655 Relative Importance in Sentence Processing: https://api.semanticscholar.org/CorpusID:235358922 Lisa Beinborn’s webpage: https://beinborn.eu/ The hosts for this episode are Alexis Ross and Pradeep Dasigi.
  continue reading

145 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main