Artwork

Kandungan disediakan oleh HackerNoon. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh HackerNoon atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Developing a Natural Language Understanding Model to Characterize Cable News Bias

4:30
 
Kongsi
 

Manage episode 419074984 series 3474160
Kandungan disediakan oleh HackerNoon. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh HackerNoon atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/developing-a-natural-language-understanding-model-to-characterize-cable-news-bias.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization.
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #stance-analysis, #natural-language-processing, #political-polarization, #bias-in-the-news, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization. We develop an unsupervised machine learning method to characterize the bias of cable news programs without any human input. This method relies on the analysis of what topics are mentioned through Named Entity Recognition and how those topics are discussed through Stance Analysis.

  continue reading

166 episod

Artwork
iconKongsi
 
Manage episode 419074984 series 3474160
Kandungan disediakan oleh HackerNoon. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh HackerNoon atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/developing-a-natural-language-understanding-model-to-characterize-cable-news-bias.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization.
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #stance-analysis, #natural-language-processing, #political-polarization, #bias-in-the-news, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization. We develop an unsupervised machine learning method to characterize the bias of cable news programs without any human input. This method relies on the analysis of what topics are mentioned through Named Entity Recognition and how those topics are discussed through Stance Analysis.

  continue reading

166 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main