Artwork

Kandungan disediakan oleh Machine Learning Street Talk (MLST). Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Machine Learning Street Talk (MLST) atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

New "50%" ARC result and current winners interviewed

2:14:17
 
Kongsi
 

Manage episode 424321476 series 2803422
Kandungan disediakan oleh Machine Learning Street Talk (MLST). Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Machine Learning Street Talk (MLST) atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

The ARC Challenge, created by Francois Chollet, tests how well AI systems can generalize from a few examples in a grid-based intelligence test. We interview the current winners of the ARC Challenge—Jack Cole, Mohammed Osman and their collaborator Michael Hodel. They discuss how they tackled ARC (Abstraction and Reasoning Corpus) using language models. We also discuss the new "50%" public set approach announced today from Redwood Research (Ryan Greenblatt). Jack and Mohammed explain their winning approach, which involves fine-tuning a language model on a large, specifically-generated dataset and then doing additional fine-tuning at test-time, a technique known in this context as "active inference". They use various strategies to represent the data for the language model and believe that with further improvements, the accuracy could reach above 50%. Michael talks about his work on generating new ARC-like tasks to help train the models. They also debate whether their methods stay true to the "spirit" of Chollet's measure of intelligence. Despite some concerns, they agree that their solutions are promising and adaptable for other similar problems. Note: Jack's team is still the current official winner at 33% on the private set. Ryan's entry is not on the private leaderboard or eligible. Chollet invented ARC in 2019 (not 2017 as stated) "Ryan's entry is not a new state of the art. We don't know exactly how well it does since it was only evaluated on 100 tasks from the evaluation set and does 50% on those, reportedly. Meanwhile Jacks team i.e. MindsAI's solution does 54% on the entire eval set and it is seemingly possible to do 60-70% with an ensemble" Jack Cole: https://x.com/Jcole75Cole https://lab42.global/community-interview-jack-cole/ Mohamed Osman: Mohamed is looking to do a PhD in AI/ML, can you help him? Email: mothman198@outlook.com https://www.linkedin.com/in/mohamedosman1905/ Michael Hodel: https://arxiv.org/pdf/2404.07353v1 https://www.linkedin.com/in/michael-hodel/ https://x.com/bayesilicon https://github.com/michaelhodel Getting 50% (SoTA) on ARC-AGI with GPT-4o - Ryan Greenblatt https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt Neural networks for abstraction and reasoning: Towards broad generalization in machines [Mikel Bober-Irizar, Soumya Banerjee] https://arxiv.org/pdf/2402.03507 Measure of intelligence: https://arxiv.org/abs/1911.01547 YT version: https://youtu.be/jSAT_RuJ_Cg

  continue reading

197 episod

Artwork
iconKongsi
 
Manage episode 424321476 series 2803422
Kandungan disediakan oleh Machine Learning Street Talk (MLST). Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Machine Learning Street Talk (MLST) atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

The ARC Challenge, created by Francois Chollet, tests how well AI systems can generalize from a few examples in a grid-based intelligence test. We interview the current winners of the ARC Challenge—Jack Cole, Mohammed Osman and their collaborator Michael Hodel. They discuss how they tackled ARC (Abstraction and Reasoning Corpus) using language models. We also discuss the new "50%" public set approach announced today from Redwood Research (Ryan Greenblatt). Jack and Mohammed explain their winning approach, which involves fine-tuning a language model on a large, specifically-generated dataset and then doing additional fine-tuning at test-time, a technique known in this context as "active inference". They use various strategies to represent the data for the language model and believe that with further improvements, the accuracy could reach above 50%. Michael talks about his work on generating new ARC-like tasks to help train the models. They also debate whether their methods stay true to the "spirit" of Chollet's measure of intelligence. Despite some concerns, they agree that their solutions are promising and adaptable for other similar problems. Note: Jack's team is still the current official winner at 33% on the private set. Ryan's entry is not on the private leaderboard or eligible. Chollet invented ARC in 2019 (not 2017 as stated) "Ryan's entry is not a new state of the art. We don't know exactly how well it does since it was only evaluated on 100 tasks from the evaluation set and does 50% on those, reportedly. Meanwhile Jacks team i.e. MindsAI's solution does 54% on the entire eval set and it is seemingly possible to do 60-70% with an ensemble" Jack Cole: https://x.com/Jcole75Cole https://lab42.global/community-interview-jack-cole/ Mohamed Osman: Mohamed is looking to do a PhD in AI/ML, can you help him? Email: mothman198@outlook.com https://www.linkedin.com/in/mohamedosman1905/ Michael Hodel: https://arxiv.org/pdf/2404.07353v1 https://www.linkedin.com/in/michael-hodel/ https://x.com/bayesilicon https://github.com/michaelhodel Getting 50% (SoTA) on ARC-AGI with GPT-4o - Ryan Greenblatt https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt Neural networks for abstraction and reasoning: Towards broad generalization in machines [Mikel Bober-Irizar, Soumya Banerjee] https://arxiv.org/pdf/2402.03507 Measure of intelligence: https://arxiv.org/abs/1911.01547 YT version: https://youtu.be/jSAT_RuJ_Cg

  continue reading

197 episod

Alla avsnitt

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main