Artwork

Kandungan disediakan oleh Dominic Lee. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Dominic Lee atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Episode 103: Deep Learning

57:10
 
Kongsi
 

Manage episode 451301959 series 3397066
Kandungan disediakan oleh Dominic Lee. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Dominic Lee atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
My guest for Episode 103 is Ronald Richman, FIA, FASSA, FeASK, CPCU, insurtech founder and thought leader in the actuarial data science movement.
The theme for the episode is 𝗗𝗲𝗲𝗽 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴.
Ron and I covered the following topics:⁣
✅ Statistics, machine learning, deep learning, and generative AI
✅ Whether GLMs are statistical or machine learning models
✅ Neural nets and their applicability to insurance
✅ Reducing the risk of overparameterization for neural nets
✅ Balancing accuracy, complexity, and explainability for deep learning models
✅ Smoothness and monotonicity considerations for deep learning models
✅ Applying classical actuarial concepts to deep learning
✅ Credibility transformers and how they enhance deep learning models
✅ An AI vision for the actuarial profession
Time Markers
1:52: Ron’s new insurtech venture and the union between actuarial science and modern technologies.
4:49: Technological shift, commoditization of large language models, and uncertainty quantification.
7:35: Distinguishing between statistics, machine learning, deep learning, and generative AI.
14:00: Are GLMs considered statistical or machine learning models?
17:04: Adoption and deployment trends for machine learning and deep learning models in insurance.
22:14: Neural networks, overparameterization, and regularization techniques.
28:22: Balancing accuracy, complexity, and explainability for deep learning models.
35:00: Addressing smoothness and monotonicity constraints for neural networks, post-job explanations of black box models (ICE).
40:25: Actuarial deep learning and enhancing deep learning models using credibility transformers.
46:54: What the actuarial profession can do to capitalize on the era of neural nets and generative AI.
50:18: Leveraging AI to enhance productivity and improve granularity of reserving analysis.
If you are seeking to explore deep learning and apply it in practice, you want to listen to this.
My Website: maverickactuary.com
  continue reading

106 episod

Artwork
iconKongsi
 
Manage episode 451301959 series 3397066
Kandungan disediakan oleh Dominic Lee. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Dominic Lee atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
My guest for Episode 103 is Ronald Richman, FIA, FASSA, FeASK, CPCU, insurtech founder and thought leader in the actuarial data science movement.
The theme for the episode is 𝗗𝗲𝗲𝗽 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴.
Ron and I covered the following topics:⁣
✅ Statistics, machine learning, deep learning, and generative AI
✅ Whether GLMs are statistical or machine learning models
✅ Neural nets and their applicability to insurance
✅ Reducing the risk of overparameterization for neural nets
✅ Balancing accuracy, complexity, and explainability for deep learning models
✅ Smoothness and monotonicity considerations for deep learning models
✅ Applying classical actuarial concepts to deep learning
✅ Credibility transformers and how they enhance deep learning models
✅ An AI vision for the actuarial profession
Time Markers
1:52: Ron’s new insurtech venture and the union between actuarial science and modern technologies.
4:49: Technological shift, commoditization of large language models, and uncertainty quantification.
7:35: Distinguishing between statistics, machine learning, deep learning, and generative AI.
14:00: Are GLMs considered statistical or machine learning models?
17:04: Adoption and deployment trends for machine learning and deep learning models in insurance.
22:14: Neural networks, overparameterization, and regularization techniques.
28:22: Balancing accuracy, complexity, and explainability for deep learning models.
35:00: Addressing smoothness and monotonicity constraints for neural networks, post-job explanations of black box models (ICE).
40:25: Actuarial deep learning and enhancing deep learning models using credibility transformers.
46:54: What the actuarial profession can do to capitalize on the era of neural nets and generative AI.
50:18: Leveraging AI to enhance productivity and improve granularity of reserving analysis.
If you are seeking to explore deep learning and apply it in practice, you want to listen to this.
My Website: maverickactuary.com
  continue reading

106 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main