Artwork

Kandungan disediakan oleh Alexandre Andorra. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Alexandre Andorra atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

#138 Quantifying Uncertainty in Bayesian Deep Learning, Live from Imperial College London

1:23:10
 
Kongsi
 

Manage episode 498899677 series 2635823
Kandungan disediakan oleh Alexandre Andorra. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Alexandre Andorra atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Bayesian deep learning is a growing field with many challenges.
  • Current research focuses on applying Bayesian methods to neural networks.
  • Diffusion methods are emerging as a new approach for uncertainty quantification.
  • The integration of machine learning tools into Bayesian models is a key area of research.
  • The complexity of Bayesian neural networks poses significant computational challenges.
  • Future research will focus on improving methods for uncertainty quantification. Generalized Bayesian inference offers a more robust approach to uncertainty.
  • Uncertainty quantification is crucial in fields like medicine and epidemiology.
  • Detecting out-of-distribution examples is essential for model reliability.
  • Exploration-exploitation trade-off is vital in reinforcement learning.
  • Marginal likelihood can be misleading for model selection.
  • The integration of Bayesian methods in LLMs presents unique challenges.

Chapters:

00:00 Introduction to Bayesian Deep Learning

03:12 Panelist Introductions and Backgrounds

10:37 Current Research and Challenges in Bayesian Deep Learning

18:04 Contrasting Approaches: Bayesian vs. Machine Learning

26:09 Tools and Techniques for Bayesian Deep Learning

31:18 Innovative Methods in Uncertainty Quantification

36:23 Generalized Bayesian Inference and Its Implications

41:38 Robust Bayesian Inference and Gaussian Processes

44:24 Software Development in Bayesian Statistics

46:51 Understanding Uncertainty in Language Models

50:03 Hallucinations in Language Models

53:48 Bayesian Neural Networks vs Traditional Neural Networks

58:00 Challenges with Likelihood Assumptions

01:01:22 Practical Applications of Uncertainty Quantification

01:04:33 Meta Decision-Making with Uncertainty

01:06:50 Exploring Bayesian Priors in Neural Networks

01:09:17 Model Complexity and Data Signal

01:12:10 Marginal Likelihood and Model Selection

01:15:03 Implementing Bayesian Methods in LLMs

01:19:21 Out-of-Distribution Detection in LLMs

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer,...

  continue reading

182 episod

Artwork
iconKongsi
 
Manage episode 498899677 series 2635823
Kandungan disediakan oleh Alexandre Andorra. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Alexandre Andorra atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Bayesian deep learning is a growing field with many challenges.
  • Current research focuses on applying Bayesian methods to neural networks.
  • Diffusion methods are emerging as a new approach for uncertainty quantification.
  • The integration of machine learning tools into Bayesian models is a key area of research.
  • The complexity of Bayesian neural networks poses significant computational challenges.
  • Future research will focus on improving methods for uncertainty quantification. Generalized Bayesian inference offers a more robust approach to uncertainty.
  • Uncertainty quantification is crucial in fields like medicine and epidemiology.
  • Detecting out-of-distribution examples is essential for model reliability.
  • Exploration-exploitation trade-off is vital in reinforcement learning.
  • Marginal likelihood can be misleading for model selection.
  • The integration of Bayesian methods in LLMs presents unique challenges.

Chapters:

00:00 Introduction to Bayesian Deep Learning

03:12 Panelist Introductions and Backgrounds

10:37 Current Research and Challenges in Bayesian Deep Learning

18:04 Contrasting Approaches: Bayesian vs. Machine Learning

26:09 Tools and Techniques for Bayesian Deep Learning

31:18 Innovative Methods in Uncertainty Quantification

36:23 Generalized Bayesian Inference and Its Implications

41:38 Robust Bayesian Inference and Gaussian Processes

44:24 Software Development in Bayesian Statistics

46:51 Understanding Uncertainty in Language Models

50:03 Hallucinations in Language Models

53:48 Bayesian Neural Networks vs Traditional Neural Networks

58:00 Challenges with Likelihood Assumptions

01:01:22 Practical Applications of Uncertainty Quantification

01:04:33 Meta Decision-Making with Uncertainty

01:06:50 Exploring Bayesian Priors in Neural Networks

01:09:17 Model Complexity and Data Signal

01:12:10 Marginal Likelihood and Model Selection

01:15:03 Implementing Bayesian Methods in LLMs

01:19:21 Out-of-Distribution Detection in LLMs

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer,...

  continue reading

182 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main