Artwork

Kandungan disediakan oleh Francesco Gadaleta. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Francesco Gadaleta atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Why AI Researchers Are Suddenly Obsessed With Whirlpools (Ep. 293)

33:15
 
Kongsi
 

Manage episode 516692361 series 2600992
Kandungan disediakan oleh Francesco Gadaleta. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Francesco Gadaleta atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

VortexNet uses actual whirlpools to build neural networks. Seriously.
By borrowing equations from fluid dynamics, this new architecture might solve deep learning's toughest problems—from vanishing gradients to long-range dependencies.
Today we explain how vortex shedding, the Strouhal number, and turbulent flows might change everything in AI.

Sponsors

This episode is brought to you by Statistical Horizons
At Statistical Horizons, you can stay ahead with expert-led livestream seminars that make data analytics and AI methods practical and accessible.
Join thousands of researchers and professionals who’ve advanced their careers with Statistical Horizons.
Get $200 off any seminar with code DATA25 at https://statisticalhorizons.com

References

https://samim.io/p/2025-01-18-vortextnet/

  continue reading

298 episod

Artwork
iconKongsi
 
Manage episode 516692361 series 2600992
Kandungan disediakan oleh Francesco Gadaleta. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Francesco Gadaleta atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

VortexNet uses actual whirlpools to build neural networks. Seriously.
By borrowing equations from fluid dynamics, this new architecture might solve deep learning's toughest problems—from vanishing gradients to long-range dependencies.
Today we explain how vortex shedding, the Strouhal number, and turbulent flows might change everything in AI.

Sponsors

This episode is brought to you by Statistical Horizons
At Statistical Horizons, you can stay ahead with expert-led livestream seminars that make data analytics and AI methods practical and accessible.
Join thousands of researchers and professionals who’ve advanced their careers with Statistical Horizons.
Get $200 off any seminar with code DATA25 at https://statisticalhorizons.com

References

https://samim.io/p/2025-01-18-vortextnet/

  continue reading

298 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main