Artwork

Kandungan disediakan oleh Roman Villard. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Roman Villard atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Creating Scalable Automations With Your Data

9:12
 
Kongsi
 

Manage episode 477165365 series 3629438
Kandungan disediakan oleh Roman Villard. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Roman Villard atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

🎙️ Why Point-to-Point Automation Is Broken—and What to Do Instead | Data Fuel Podcast

🔔 Subscribe for smarter systems, cleaner data & automation that actually scales

📢 Your Zaps and automations are breaking—and it’s not your fault. Tools like Zapier and Make are powerful, but when used in point-to-point setups, they create fragile, error-prone spaghetti systems. In this episode of Data Fuel, we break down:

✔️ Why point-to-point automation falls apart at scale

✔️ How a centralized data warehouse solves 80% of your issues

✔️ Step-by-step plan to reroute your automations through a warehouse

✔️ Real-world use cases and tools to get started

⏱️ Chapters

00:00 – The Problem with Point-to-Point Automation (Zapier, Make, Airtable, etc.)

01:30 – How a Centralized Data Warehouse Becomes Your Automation Hub

02:10 – The Hub-and-Spoke Model: Replace Chaos with Clean Data

03:00 – Benefits: Data Normalization, Less Reliance on Fragile APIs

05:20 – Data Modeling 101: Linking IDs Across Tools (HubSpot, Billing, PM)

06:00 – Why You Should Push from Warehouse to Apps (Not the Other Way Around)

06:45 – Automation Use Case 1: Invoicing from a Ready-to-Bill Table

07:30 – Automation Use Case 2: Weekly Reporting Without Breaks

08:25 – Getting Started: The 80/20 Rule for Automation Refactoring

09:35 – Final Thoughts: Automate Smarter, Not Harder

Key Takeaways

✔️ Point-to-point automations break when data or tools change—even slightly

✔️ A centralized data warehouse (Snowflake, BigQuery, Postgres) creates structure and trust

✔️ Run automations from your warehouse using Zapier or Make, not directly from source tools

✔️ Fix 80% of your problems by starting with one high-friction automation

✔️ Warehouse-driven automation = better data integrity, scalability, and maintainability

💡 Tools Mentioned:

  • Zapier / Make
  • Snowflake, BigQuery, Postgres
  • Stitch, Fivetran, Airbyte

🔔 Like & Subscribe to Data Fuel for weekly episodes on systems thinking, ops automation, and scalable tech stacks.

Connect with us!
Website
LinkedIn

  continue reading

11 episod

Artwork
iconKongsi
 
Manage episode 477165365 series 3629438
Kandungan disediakan oleh Roman Villard. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Roman Villard atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

🎙️ Why Point-to-Point Automation Is Broken—and What to Do Instead | Data Fuel Podcast

🔔 Subscribe for smarter systems, cleaner data & automation that actually scales

📢 Your Zaps and automations are breaking—and it’s not your fault. Tools like Zapier and Make are powerful, but when used in point-to-point setups, they create fragile, error-prone spaghetti systems. In this episode of Data Fuel, we break down:

✔️ Why point-to-point automation falls apart at scale

✔️ How a centralized data warehouse solves 80% of your issues

✔️ Step-by-step plan to reroute your automations through a warehouse

✔️ Real-world use cases and tools to get started

⏱️ Chapters

00:00 – The Problem with Point-to-Point Automation (Zapier, Make, Airtable, etc.)

01:30 – How a Centralized Data Warehouse Becomes Your Automation Hub

02:10 – The Hub-and-Spoke Model: Replace Chaos with Clean Data

03:00 – Benefits: Data Normalization, Less Reliance on Fragile APIs

05:20 – Data Modeling 101: Linking IDs Across Tools (HubSpot, Billing, PM)

06:00 – Why You Should Push from Warehouse to Apps (Not the Other Way Around)

06:45 – Automation Use Case 1: Invoicing from a Ready-to-Bill Table

07:30 – Automation Use Case 2: Weekly Reporting Without Breaks

08:25 – Getting Started: The 80/20 Rule for Automation Refactoring

09:35 – Final Thoughts: Automate Smarter, Not Harder

Key Takeaways

✔️ Point-to-point automations break when data or tools change—even slightly

✔️ A centralized data warehouse (Snowflake, BigQuery, Postgres) creates structure and trust

✔️ Run automations from your warehouse using Zapier or Make, not directly from source tools

✔️ Fix 80% of your problems by starting with one high-friction automation

✔️ Warehouse-driven automation = better data integrity, scalability, and maintainability

💡 Tools Mentioned:

  • Zapier / Make
  • Snowflake, BigQuery, Postgres
  • Stitch, Fivetran, Airbyte

🔔 Like & Subscribe to Data Fuel for weekly episodes on systems thinking, ops automation, and scalable tech stacks.

Connect with us!
Website
LinkedIn

  continue reading

11 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main