Artwork

Kandungan disediakan oleh jmhreif. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh jmhreif atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Ep54: Spring AI Integrations + Real-World RAG Challenges

13:10
 
Kongsi
 

Manage episode 503206916 series 3579839
Kandungan disediakan oleh jmhreif. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh jmhreif atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Hear my latest hands-on experiences and lessons learned from the world of AI, graph databases, and developer tooling.

What’s Inside:

  • The difference between sparse and dense vectors, and how Neo4j handles them in real-world scenarios.
  • First impressions and practical tips on integrating Spring AI MCP with Neo4j’s MCP servers—including what worked, what didn’t, and how to piece together documentation from multiple sources.
  • Working with Pinecone and Neo4j for vector RAG (Retrieval-Augmented Generation) and graph RAG, plus the challenges of mapping results back to Java entities.
  • Reflections on the limitations of keyword search versus the power of contextual, conversational AI queries—using a book recommendation system demo.
  • Highlights from the article “Your RAG Pipeline is Lying with Confidence—Here’s How I Gave It a Brain with Neo4j”, including strategies for smarter chunking, avoiding semantic drift, and improving retrieval accuracy.

Links & Resources:

Thanks for listening! If you enjoyed this episode, please subscribe, share, and leave a review. Happy coding!

  continue reading

63 episod

Artwork
iconKongsi
 
Manage episode 503206916 series 3579839
Kandungan disediakan oleh jmhreif. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh jmhreif atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

Hear my latest hands-on experiences and lessons learned from the world of AI, graph databases, and developer tooling.

What’s Inside:

  • The difference between sparse and dense vectors, and how Neo4j handles them in real-world scenarios.
  • First impressions and practical tips on integrating Spring AI MCP with Neo4j’s MCP servers—including what worked, what didn’t, and how to piece together documentation from multiple sources.
  • Working with Pinecone and Neo4j for vector RAG (Retrieval-Augmented Generation) and graph RAG, plus the challenges of mapping results back to Java entities.
  • Reflections on the limitations of keyword search versus the power of contextual, conversational AI queries—using a book recommendation system demo.
  • Highlights from the article “Your RAG Pipeline is Lying with Confidence—Here’s How I Gave It a Brain with Neo4j”, including strategies for smarter chunking, avoiding semantic drift, and improving retrieval accuracy.

Links & Resources:

Thanks for listening! If you enjoyed this episode, please subscribe, share, and leave a review. Happy coding!

  continue reading

63 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main