Artwork

Kandungan disediakan oleh Brian Carter. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Brian Carter atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Reviewing Stanford on Linear Regression and Gradient Descent

8:25
 
Kongsi
 

Manage episode 446880554 series 3605861
Kandungan disediakan oleh Brian Carter. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Brian Carter atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

This lecture from Stanford University's CS229 course, "Machine Learning," focuses on the theory and practice of linear regression and gradient descent, two fundamental machine learning algorithms. The lecture begins by motivating linear regression as a simple supervised learning algorithm for regression problems where the goal is to predict a continuous output based on a set of input features. The lecture then introduces the cost function used in linear regression, which measures the squared error between the predicted output and the true output. Gradient descent, an iterative algorithm, is then explained as a method to find the parameters that minimize the cost function. Two variants of gradient descent, batch gradient descent and stochastic gradient descent, are discussed with their respective strengths and weaknesses. The lecture concludes with a derivation of the normal equations, an alternative approach to finding the optimal parameters in linear regression that involves solving a system of equations rather than iteratively updating parameters.

Watch Andrew Ng teach it at Stanford: https://www.youtube.com/watch?v=4b4MUYve_U8&t=1086s&pp=ygUSdmFuaXNoaW5nIGdyYWRpZW50

  continue reading

71 episod

Artwork
iconKongsi
 
Manage episode 446880554 series 3605861
Kandungan disediakan oleh Brian Carter. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Brian Carter atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

This lecture from Stanford University's CS229 course, "Machine Learning," focuses on the theory and practice of linear regression and gradient descent, two fundamental machine learning algorithms. The lecture begins by motivating linear regression as a simple supervised learning algorithm for regression problems where the goal is to predict a continuous output based on a set of input features. The lecture then introduces the cost function used in linear regression, which measures the squared error between the predicted output and the true output. Gradient descent, an iterative algorithm, is then explained as a method to find the parameters that minimize the cost function. Two variants of gradient descent, batch gradient descent and stochastic gradient descent, are discussed with their respective strengths and weaknesses. The lecture concludes with a derivation of the normal equations, an alternative approach to finding the optimal parameters in linear regression that involves solving a system of equations rather than iteratively updating parameters.

Watch Andrew Ng teach it at Stanford: https://www.youtube.com/watch?v=4b4MUYve_U8&t=1086s&pp=ygUSdmFuaXNoaW5nIGdyYWRpZW50

  continue reading

71 episod

همه قسمت ها

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas
Dengar rancangan ini semasa anda meneroka
Main