Artwork

Kandungan disediakan oleh Changelog Media. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Changelog Media atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.
Player FM - Aplikasi Podcast
Pergi ke luar talian dengan aplikasi Player FM !

Metrics Driven Development (Practical AI #284)

42:14
 
Kongsi
 

Manage episode 436950700 series 1423445
Kandungan disediakan oleh Changelog Media. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Changelog Media atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

How do you systematically measure, optimize, and improve the performance of LLM applications (like those powered by RAG or tool use)? Ragas is an open source effort that has been trying to answer this question comprehensively, and they are promoting a “Metrics Driven Development” approach. Shahul from Ragas joins us to discuss Ragas in this episode, and we dig into specific metrics, the difference between benchmarking models and evaluating LLM apps, generating synthetic test data and more.

Join the discussion

Changelog++ members save 5 minutes on this episode because they made the ads disappear. Join today!

Sponsors:

  • Assembly AI – Turn voice data into summaries with AssemblyAI’s leading Speech AI models. Built by AI experts, their Speech AI models include accurate speech-to-text for voice data (such as calls, virtual meetings, and podcasts), speaker detection, sentiment analysis, chapter detection, PII redaction, and more.

Featuring:

Show Notes:

Something missing or broken? PRs welcome!

  continue reading

Bab

1. Welcome to Practical AI (00:00:00)

2. What is Ragas (00:00:43)

3. General LLM evaluation (00:05:19)

4. Current unit testing workflow (00:10:10)

5. Metrics driven development (00:14:37)

6. Sponsor: Assembly AI (00:17:20)

7. Most used metrics (00:20:59)

8. Data burdens (00:26:27)

9. Exciting things coming (00:35:50)

10. Thanks for joining us! (00:40:49)

11. Outro (00:41:25)

2169 episod

Artwork
iconKongsi
 
Manage episode 436950700 series 1423445
Kandungan disediakan oleh Changelog Media. Semua kandungan podcast termasuk episod, grafik dan perihalan podcast dimuat naik dan disediakan terus oleh Changelog Media atau rakan kongsi platform podcast mereka. Jika anda percaya seseorang menggunakan karya berhak cipta anda tanpa kebenaran anda, anda boleh mengikuti proses yang digariskan di sini https://ms.player.fm/legal.

How do you systematically measure, optimize, and improve the performance of LLM applications (like those powered by RAG or tool use)? Ragas is an open source effort that has been trying to answer this question comprehensively, and they are promoting a “Metrics Driven Development” approach. Shahul from Ragas joins us to discuss Ragas in this episode, and we dig into specific metrics, the difference between benchmarking models and evaluating LLM apps, generating synthetic test data and more.

Join the discussion

Changelog++ members save 5 minutes on this episode because they made the ads disappear. Join today!

Sponsors:

  • Assembly AI – Turn voice data into summaries with AssemblyAI’s leading Speech AI models. Built by AI experts, their Speech AI models include accurate speech-to-text for voice data (such as calls, virtual meetings, and podcasts), speaker detection, sentiment analysis, chapter detection, PII redaction, and more.

Featuring:

Show Notes:

Something missing or broken? PRs welcome!

  continue reading

Bab

1. Welcome to Practical AI (00:00:00)

2. What is Ragas (00:00:43)

3. General LLM evaluation (00:05:19)

4. Current unit testing workflow (00:10:10)

5. Metrics driven development (00:14:37)

6. Sponsor: Assembly AI (00:17:20)

7. Most used metrics (00:20:59)

8. Data burdens (00:26:27)

9. Exciting things coming (00:35:50)

10. Thanks for joining us! (00:40:49)

11. Outro (00:41:25)

2169 episod

Semua episod

×
 
Loading …

Selamat datang ke Player FM

Player FM mengimbas laman-laman web bagi podcast berkualiti tinggi untuk anda nikmati sekarang. Ia merupakan aplikasi podcast terbaik dan berfungsi untuk Android, iPhone, dan web. Daftar untuk melaraskan langganan merentasi peranti.

 

Panduan Rujukan Pantas

Podcast Teratas